

TINY series

- Diode-pumped Nd:YAG ns-laser

TINY series provide most compact and portable diode pumped air cooled nanosecond lasers with high performance and at a very reasonable price. Diode pumping reduces size, improves lifetime, and eliminates maintenance requirements.

FEATURES

- Air cooled compact design-no water required
- **30-80mJ** at 1064nm / Harmonics from 532nm to 266nm
- 10-50 Hz repetition rate / 8-10 ns pulse duration
- Compact and rugged resonator structure ensures long-term thermal and mechanical stability
- Long lifetime over 1 billion shots
- RS232 interface for remote operation

APPLICATIONS

- LIDAR
- LIBS
- Remote sensing
- Ablation
- Mass spectroscopy

TINY-80 Laser Head Mechanical Specifications

Unit:mm

TINY series Specifications

Diode-pumped Nd:YAG ns-laser

Beam characteristics

Version	TINY-30	TINY-50	TINY-80
Repetition Rate ¹ (Hz)	10-50Hz	10-30Hz	10-20Hz
Energy (mJ)			
1064nm	30	50	80
532nm	18	30	50
355nm	7	12	20
266nm	4	6	10
Energy Stability RMS (%)			
1064nm	0.7%		
532nm	1.2%		
355nm	1.7%		
266nm	2.8%		
Power Drift ² (%)			
1064nm	3%		
532nm	5%		
355nm	8%		
266nm	10%		
Pulsewidth FWHM ³ (ns)	8-10ns @1064nm		
Divergence ⁴ (mrad)	<3mrad		
Beam Pointing Stability ⁵ (µrad)	50μrad		
Timing Jitter RMS ⁶ (ns)	<1ns		
Beam Diameter (mm)	~5	~5	~6
Transverse Mode ⁷	Multimode (GRM mode option)		
Polarization	linear		
Warm Up Time (min)	<10min		

AC Input	220 VAC ±5% 50-60Hz	
Power Consumption	<200W (typical 80mJ at 10Hz)	
Operating Conditions	Temperature 10-30°C Humidity <60%	

NOTES

- 1.All specifications at 1064 nm and 10 Hz repetition rate unless otherwise noted.
- 2. Average in 8 hours with room temperature variation $\delta T < 3$ °C.
- 3.Full width at half maximum.
- 4.Full angle for 86.5% of energy.
- 5.Represents RMS value deviation from beam mean centroid.
- 6. With respect to external trigger.
- 7.GRM resonator mode or stable multimode option. Stable version may operate over a wider range of repetition rate and higher output energy compared with GRM mode.

Grace Laser Technology Co., Ltd.

Ju Hong BLDG B, Area B, Airport Industrial Park, Shunyi District, Beijing, China

Postcode: 101318

Tel: +86 010-60401920 Fax: +86 010-60401720 Email: sales@gracelaser.com

Web: www.gracelaser.com

